19 research outputs found

    Particle Creation from Vacuum by Lorentz Violation

    Full text link
    It is shown that the vacuum state in presence of Lorentz violation can be followed by a particle-full universe that represents the current status of the universe. In this model the modification in dispersion relation (Lorentz violation) is picked up representing the regime of quantum gravity. The result can be interpreted such that the existence of the particles is an evidence for quantum effects of gravity in the past. It is concluded that only the vacuum state is sufficient to appear the matter fields spontaneously after the process of semi-classical analysis.Comment: 9 pages, 2 figure

    Big bounce from spin and torsion

    Full text link
    The Einstein-Cartan-Sciama-Kibble theory of gravity naturally extends general relativity to account for the intrinsic spin of matter. Spacetime torsion, generated by spin of Dirac fields, induces gravitational repulsion in fermionic matter at extremely high densities and prevents the formation of singularities. Accordingly, the big bang is replaced by a bounce that occurred when the energy density ϵgT4\epsilon\propto gT^4 was on the order of n2/mPl2n^2/m_\textrm{Pl}^2 (in natural units), where ngT3n\propto gT^3 is the fermion number density and gg is the number of thermal degrees of freedom. If the early Universe contained only the known standard-model particles (g100g\approx 100), then the energy density at the big bounce was about 15 times larger than the Planck energy. The minimum scale factor of the Universe (at the bounce) was about 103210^{32} times smaller than its present value, giving \approx 50 \mum. If more fermions existed in the early Universe, then the spin-torsion coupling causes a bounce at a lower energy and larger scale factor. Recent observations of high-energy photons from gamma-ray bursts indicate that spacetime may behave classically even at scales below the Planck length, supporting the classical spin-torsion mechanism of the big bounce. Such a classical bounce prevents the matter in the contracting Universe from reaching the conditions at which a quantum bounce could possibly occur.Comment: 6 pages; published versio

    MODELLING OF ELASTIC-PLASTIC DEFORMATION OF POLYCRYSTALLINE AND COMPOSITE MATERIALS UNDER LOADING

    No full text
    The process of deformation development in a polycrystal with pain interaction is modelled in frames of flat two-dimensional elastic-plastic flow of the media with structure. The processes of a possible fragmentation and a grain boundary segregation influence on the plastic deformations development are considered. The influence of distribution of a work under non-elastic deformation on material structure change and average value of mechanical parameters determination is analising in the presented calculations of deformation of a composite material with damping matrix
    corecore